Thursday, 12 January 2017

Gewichtete Gleitende Durchschnittliche Beispielprobleme

Exploration der exponentiell gewichteten Moving Average Volatilität ist die häufigste Maßnahme für das Risiko, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, lesen Sie unter Verwenden der Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächliche Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns nur auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, seine wirklich nur ein Durchschnitt der quadrierten periodischen kehrt zurück. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Also, wenn alpha (a) ein Gewichtungsfaktor (speziell eine 1m) ist, dann eine einfache Varianz sieht etwa so aus: Die EWMA verbessert auf einfache Varianz Die Schwäche dieser Ansatz ist, dass alle Renditen das gleiche Gewicht zu verdienen. Yesterdays (sehr jüngste) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Mittelwert (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Aktienkursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit nieder, daher könnte eine einfache Varianz künstlich hoch sein. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkenden Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet mit Lambda) plus der gestrigen Rückkehr (gewogen durch ein Minus-Lambda). Beachten Sie, wie wir sind nur das Hinzufügen von zwei Begriffe zusammen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Renditen. (Um ein Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.) Weighted Moving Averages: Die Grundlagen Im Laufe der Jahre haben Techniker zwei Probleme mit dem einfachen gleitenden Durchschnitt gefunden. Das erste Problem liegt im Zeitrahmen des gleitenden Durchschnitts (MA). Die meisten technischen Analysten glauben, dass Preis-Aktion. Der Eröffnungs - oder Schlussaktienkurs, reicht nicht aus, um davon abhängen zu können, ob Kauf - oder Verkaufssignale der MAs-Crossover-Aktion richtig vorhergesagt werden. Zur Lösung dieses Problems weisen die Analysten den jüngsten Preisdaten nun mehr Gewicht zu, indem sie den exponentiell geglätteten gleitenden Durchschnitt (EMA) verwenden. (Erfahren Sie mehr bei der Exploration der exponentiell gewogenen gleitenden Durchschnitt.) Ein Beispiel Zum Beispiel, mit einem 10-Tage-MA, würde ein Analytiker den Schlusskurs des 10. Tag nehmen und multiplizieren Sie diese Zahl mit 10, der neunte Tag um neun, der achte Tag um acht und so weiter auf die erste der MA. Sobald die Summe bestimmt worden ist, würde der Analytiker dann die Zahl durch die Addition der Multiplikatoren dividieren. Wenn Sie die Multiplikatoren des 10-Tage-MA-Beispiels hinzufügen, ist die Zahl 55. Dieses Kennzeichen wird als linear gewichteter gleitender Durchschnitt bezeichnet. (Für verwandte Themen lesen Sie in Simple Moving Averages machen Trends Stand Out.) Viele Techniker sind fest Anhänger in der exponentiell geglättet gleitenden Durchschnitt (EMA). Dieser Indikator wurde auf so viele verschiedene Weisen erklärt, dass er Studenten und Investoren gleichermaßen verwirrt. Vielleicht die beste Erklärung kommt von John J. Murphys Technische Analyse der Finanzmärkte, (veröffentlicht von der New York Institute of Finance, 1999): Der exponentiell geglättete gleitende Durchschnitt adressiert beide Probleme, die mit dem einfachen gleitenden Durchschnitt verbunden sind. Erstens weist der exponentiell geglättete Durchschnitt den neueren Daten ein größeres Gewicht zu. Daher ist es ein gewichteter gleitender Durchschnitt. Doch während es den vergangenen Preisdaten eine geringere Bedeutung zuweist, enthält es in seiner Berechnung alle Daten in der Lebensdauer des Instruments. Zusätzlich ist der Benutzer in der Lage, die Gewichtung anzupassen, um ein größeres oder geringeres Gewicht zu dem letzten Tagespreis zu ergeben, der zu einem Prozentsatz des vorherigen Tageswertes addiert wird. Die Summe der beiden Prozentwerte addiert sich zu 100. Beispielsweise könnte dem letzten Tagespreis ein Gewicht von 10 (.10) zugewiesen werden, das zum vorherigen Tagegewicht von 90 (.90) addiert wird. Das ergibt den letzten Tag 10 der Gesamtgewichtung. Dies wäre das Äquivalent zu einem 20-Tage-Durchschnitt, indem die letzten Tage Preis einen kleineren Wert von 5 (.05). Abbildung 1: Exponentiell geglättete gleitende Durchschnittswerte Die obige Grafik zeigt den Nasdaq Composite Index von der ersten Woche im Aug. 2000 bis zum 1. Juni 2001. Wie Sie deutlich sehen können, ist die EMA, die in diesem Fall die Schlusskursdaten über eine Neun-Tage-Zeitraum, hat endgültige Verkaufssignale am 8. September (gekennzeichnet durch einen schwarzen Pfeil nach unten). Dies war der Tag, an dem der Index unter dem Niveau von 4.000 unterbrach. Der zweite schwarze Pfeil zeigt ein anderes Bein, das die Techniker tatsächlich erwartet hatten. Der Nasdaq konnte nicht genug Volumen und Interesse von den Kleinanlegern erzeugen, um die 3.000 Marke zu brechen. Danach tauchte es wieder zu Boden, um 1619.58 am 4. April. Der Aufwärtstrend vom 12. April ist durch einen Pfeil markiert. Hier schloss der Index bei 1.961,46, und Techniker begannen zu sehen, institutionelle Fondsmanager ab, um einige Schnäppchen wie Cisco, Microsoft und einige der energiebezogenen Fragen abholen. (Lesen Sie unsere verwandten Artikel: Moving Average Umschläge: Verfeinern eines beliebten Trading-Tool und Moving Average Bounce.) Gewichtete durchschnittliche Probleme Es gibt drei Haupttypen von durchschnittlichen Problemen häufig in der Schule Algebra: Average (Arithmetic Mean). Gewichtete Durchschnitts - und Durchschnittsgeschwindigkeit. In dieser Lektion lernen wir, wie man gewichtete Durchschnittsprobleme lösen kann. Gewichtete durchschnittliche Probleme Eine Art von durchschnittlichen Problemen beinhaltet den gewichteten Durchschnitt - das ist der Durchschnitt von zwei oder mehr Ausdrücke, die nicht alle die gleiche Anzahl von Mitgliedern haben. Um den gewichteten Begriff zu finden, multiplizieren Sie jeden Begriff mit seinem Gewichtungsfaktor, der die Anzahl von Malen jedes Termes ist. Die Formel für den gewichteten Durchschnitt ist: Eine Klasse von 25 Studenten nahm einen Wissenschaftstest. 10 Schüler hatten eine durchschnittliche (arithmetische Mittelwert) von 80. Die anderen Schüler hatten eine durchschnittliche Punktzahl von 60. Was ist die durchschnittliche Punktzahl der ganzen Klasse Schritt 1: Um die Summe der gewichteten Begriffe, multiplizieren jeden Durchschnitt mit der Anzahl der Studenten, die diesen Durchschnitt hatten und dann zusammenfassen. 80 Mal 10 60 Mal 15 800 900 1700 Schritt 2: Gesamtzahl der Begriffe Gesamtzahl der Schüler 25 Schritt 3: Verwenden der Formel Antwort: Die durchschnittliche Punktzahl der ganzen Klasse ist 68. Seien Sie vorsichtig Sie erhalten die falsche Antwort, wenn Sie hinzufügen Die beiden durchschnittlichen Punkte und teilen die Antwort durch zwei. Beispiel für die Berechnung des gewichteten Durchschnitts Beispiel: Bei einem Health Club sind 80 der Mitglieder Männer und 20 der Mitglieder sind Frauen. Wenn das Durchschnittsalter der Männer 30 ist und das Durchschnittsalter der Frauen 40 ist, was ist das Durchschnittsalter aller Mitglieder Show Step-by-Step-Lösungen So finden Sie den gewichteten Durchschnitt bei einer Häufigkeit Tabelle Beispiel: Eine Gruppe von Wie viele Filme sie in einer Woche sehen. Die folgende Tabelle zeigt das Ergebnis der Befragung. (A) Wie viele Personen haben an der Umfrage teilgenommen (b) Wie hoch war die Gesamtzahl der Filme, die in der Woche von allen Umfrageteilnehmern gesehen wurden? (C) Was war die durchschnittliche Anzahl von Kinofilmen in einer Woche pro befragter Person Show Step - Schritt-Lösungen Wie man gewichtete Durchschnitte und Mischungsprobleme mischt Probleme sind Probleme, in denen zwei oder mehr Teile zu einem Ganzen kombiniert werden. Beispiele: 1. Premium Kaffee ist 9.50lb, Supreme Kaffee ist 11.75lb und Blend Kaffee ist 10.00lb. Wie viele Pfund Premium-Kaffeebohnen sollten mit zwei Pfund Supreme-Kaffee gemischt werden, um Blend Kaffee 2 zu machen. Ein Autos Heizkörper sollte eine Lösung von 50 Frostschutzmittel enthalten. Bo hat 2 Gallonen 35 Frostschutzmittel. Wie viele Gallonen von 100 Frostschutzmittel sollte er zu seiner Lösung hinzufügen, um eine Lösung von 50 Frostschutzmittel produzieren Show Step-by-Step-Lösungen So lösen Sie Gewichtete durchschnittliche Wort Probleme Beispiele: 1) Wie viele Pfunde gemischte Nüsse für 4,75 pro Pfund verkaufen sollte Gemischt mit 10 Pfund getrockneter Frucht, die für 5,50 pro Pfund verkauft wird, um eine Spurmischung zu erhalten, die für 4,95 pro Pfund verkauft. 2) Ein Chemieexperiment fordert eine 30 Lösung von Kupfersulfat. Kendra hat 40 Milliliter 25 Lösung. Wie viele Milliliter von 60 Lösung sollte sie hinzufügen, um eine 30 Lösung 3) Ein Auto und ein Notfall sind auf dem Weg zu einander. Das Auto fährt mit einer Geschwindigkeit von 30 mph oder 44 Fuß pro Sekunde. Das Notfahrzeug fährt mit einer Geschwindigkeit von 50 mph oder etwa 74 Fuß pro Sekunde. Wenn die Fahrzeuge sind 1000 Meter auseinander und die Bedingungen sind ideal, in wie vielen Sekunden wird der Antrieb des Autos zuerst hören die Sirene Show Step-by-Step SolutionsRotate auf Landschaftsbildschirm-Format auf einem Handy oder kleine Tablette, um das Mathway-Widget zu verwenden , Ein kostenloser mathematischer Problemlöser, der Ihre Fragen mit Schritt-für-Schritt-Erklärungen beantwortet. Sie können die kostenlose Mathway-Rechner und Problemlöser unten verwenden, um Algebra oder andere mathematische Themen zu üben. Versuchen Sie die angegebenen Beispiele, oder geben Sie in Ihrem eigenen Problem und überprüfen Sie Ihre Antwort mit den Schritt-für-Schritt-Erklärungen.


No comments:

Post a Comment